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Abstract

A numerical investigation was carried out to study the laminar non-Newtonian flow through an axisymmetric sudden expansion
having a diameter ratio of 1 to 2.6. The fluids were inelastic and shear thinning with a viscosity obeying the power law model. The
recirculation length and strength and, most importantly, the local loss coefficient Cy were quantified as a function of the inlet pipe
Reynolds number and shear-thinning intensity. When using the generalised Reynolds number introduced by Metzner and Reed
[AIChEJ 1 (1955) 434] (Regen), at low Reynolds numbers Cy increased by more than 100% when n varied from 1.0 to 0.2, whereas Cj
decreased by more than 50% at high Reynolds numbers. However, this feature was shown to be related to the definition of the
Reynolds number. A correlation between Ci, Rege, and n is presented at the end.

© 2003 Elsevier Inc. All rights reserved.

Keywords: Sudden expansion; Pressure loss; Shear thinning; Recirculation length

1. Introduction

Sudden expansion flows occur frequently in many
industrial applications and bring together geometric
simplicity with a not so simple flow behaviour. They
have been extensively investigated in the past for New-
tonian fluids both numerically (Habib and Whitelaw,
1982; Macagno and Hung, 1967; Oliveira and Pinho,
1997) and experimentally (Stieglmeier et al., 1989;
Khezzar et al., 1985; Back and Roschke, 1972) amongst
others, in the laminar and mainly in the turbulent flow
regimes.

When the fluids exhibit non-Newtonian characteris-
tics the literature is scarcer. Halmos and Boger (1975)
investigated experimentally some mean flow character-
istics in a 1:2 sudden expansion in laminar flow and their
measurements showed that the length of the recircula-
tion bubble was increased by the shear-thinning inten-
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sity. The numerical works of Halmos et al. (1975) and
Perera and Walters (1977) reached similar conclusions
as far as the role of shear-thinning and elasticity are
concerned, although the flow conditions were not the
same. Halmos et al. (1975) considered fully developed
flow at the inlet of the expansion and their numerical
results showed a systematic over-prediction of the re-
circulation length by 7% relative to the measurements of
Halmos and Boger (1975). Perera and Walters (1977)
studied the hydrodynamics of an expansion/contraction/
expansion duct and their concern was the investigation
of elastic effects. They concluded that there were no
significant changes of hydrodynamic behaviour between
shear-thinning fluids and equivalent Newtonian liquids
due to pure viscous effects. The definition of an equiv-
alent Newtonian fluid embedding some of the differences
between non-Newtonian and Newtonian fluids, helped
to reach this conclusion. On the effect of elasticity,
however, Halmos and Boger (1976) observed a reduc-
tion in recirculation length when the stress ratio ex-
ceeded a critical value and found it to be proportional to
the Weissenberg number of the flow. This was attributed
to a die swelling type of effect.
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Nomenclature

G local loss coefficient (C; = Api/§pU})
AC corrective pressure coefficient

D pipe diameter

f Darcy friction factor

h step height

k consistency index of viscosity power law
L length

n power index of the viscosity power law
p pressure

Ap pressure difference

radial coordinate
Rege,  generalized Reynolds number, Eq. (17)
Remoa  modified Reynolds number, Eq. (18)

~N

U bulk velocity, U = u

X axial coordinate

Xr recirculation length (X; = x,/h)

Y height of the wedge-shaped computational
domain

Greeks

o profile shape factor for energy (o = u3/U?),
Eq. (8)

B profile shape factor for momentum

(B =u?/U), Eq. (9)

Uy apparent viscosity
I'4 Stream function
o fluid density

G area ratio

T shear stress
Subscripts

c-th theoretical values corrected for friction, mo-
mentum and pressure effects

F fully developed wall frictional contribution
I irreversible contribution

max  maximum

PO non-uniform pressure effect

R reversible contribution

th standard theoretical value

tot total

B momentum effect

01 plane just upstream of the expansion
02 plane just downstream of expansion
1 inlet pipe

2 outlet pipe

Superscripts

— (overbar) cross-section area average

More recently, Pak et al. (1990) conducted similar
experiments and showed the opposing effects of visco-
elasticity in the laminar and turbulent regimes: elasticity
reduced the recirculation length in the former case but
increased its size in the latter. Thus, for laminar flow,
their findings confirmed the trends previously reported.

For the turbulent flow of drag reducing fluids, Pak
et al. (1990, 1991) presented pressure and mean velocity
data measurements in an axisymmetric sudden expan-
sion, but did not report the corresponding turbulent
flow field. This motivated recent experimental research
in the field by Castro and Pinho (1995), Escudier and
Smith (1999) and Pereira and Pinho (2000, 2002), who
did not confirm the trends due to fluid elasticity, but this
could be because the fluids used were less elastic than
those used previously by Pak et al.

Other works on viscoelastic sudden expansion flows
at very low Reynolds numbers were by Baloch et al.
(1995, 1996) and Missirlis et al. (1998). Baloch et al.
(1995) concentrated on assessing three-dimensional ef-
fects on large expansion ratio geometries whereas Ba-
loch et al.’s (1996) numerical work used the exponential
Phan-Thien-Tanner model for predicting mean flow
characteristics. Missirlis et al.’s (1998) work, in contrast,
was aimed at developing a numerical method rather
than at investigating in detail the expansion flow and

their predictions were for the constant viscosity, elastic
Upper Convected Maxwell model.

_ For Bingham and Herschel-Bulkley fluids Vradis and
Otiigen (1997) and Hammad et al. (2001) have also
conducted numerical experiments, but these works were
basically aimed at assessing the effect of yield stress
upon kinematic quantities (velocity profiles and recir-
culation length).

In spite of these efforts not much attention has been
devoted to the issue of pressure losses in sudden ex-
pansions in a useful way, hence Newtonian correlations
are usually used for the purpose of calculating the
pumping power in non-Newtonian duct flows. Two ex-
ceptions to this state of affairs are noted: the experi-
mental work of Edwards et al. (1985) and the theoretical
work of Gupta (1965). The main objective of Edwards
et al. (1985) was to experimentally quantify the varia-
tion of the irreversible pressure loss coefficient with the
Reynolds number for Newtonian and power law fluids.
At low Reynolds numbers they reported the inverse law
(C1 = A/Re) with a coefficient that depended on the
expansion ratio but not on the power law index. At in-
termediate Reynolds numbers (Re ~ 250), the irrevers-
ible pressure loss coefficient varied linearly with the
Reynolds number and above this value it tended to the
turbulent flow asymptotic value, regardless of fluid
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rheology. The transition from the inverse law to a con-
stant Cy value was very smooth and quick. Unfortu-
nately, by not accounting for the differences between the
true and fully developed friction losses in the upstream
and downstream pipes, their coefficients are not exact
and are not directly comparable to those reported in this
paper.

For laminar Newtonian pipe sudden expansion flows,
Oliveira and Pinho (1997) and Oliveira et al. (1998) have
clearly demonstrated that the local loss coefficient differs
by a large amount from the standard expressions found
in reference books and manuals (Crane, 1999; Hooper,
1988), with the differences increasing as the Reynolds
number is reduced. These differences are bound to be
more severe with non-Newtonian fluids and this work is
aimed at quantifying them numerically in a systematic
way, and also at reporting other hydrodynamic char-
acteristics of the flow in axisymmetric sudden expan-
sions. The theoretical work of Gupta (1965) was a first
contribution to this aim but no account was given to
viscous effects, therefore his expression, which is equiv-
alent to an uncorrected Cgy in our work, is in large error
to the true local loss coefficient, as will be seen.

This sets the stage for the present work: a numerical
investigation of sudden expansion flows of purely vis-
cous non-Newtonian fluids without yield stress, aimed at
obtaining the variation of the local loss coefficient as a
function of the Reynolds number and the degree of
shear thinning. As a subsidiary result, the recirculation
length and the strength of the eddy are also quantified
but over a more limited range of conditions.

The next section presents the problem and is followed
by an outline of the numerical procedure, the specifi-
cations of the calculation domain and the boundary
conditions. This is followed by a brief outline of the
theory underlying the determination of the local loss
coefficients, an assessment of the uncertainty of the
calculations and the presentation and discussion of re-
sults. The paper ends with a summary of the main

conclusions and the presentation of a useful correlation
for Cy for engineering practice.

2. Basic equations and the numerical method

Fig. 1 shows schematically the axisymmetric sudden
expansion and the control volume used. There is a long
pipe of length L; and diameter D; upstream of the
sudden expansion to ensure a fully developed inlet flow.
Downstream of the sudden expansion plane the pipe is
also sufficiently long (length L,, diameter D) for the
flow to redevelop again.

The calculations are aimed at obtaining various
global flow quantities as a function of the Reynolds
number (Re) and shear-thinning intensity (n). Those
quantities are the recirculation length (Xg = x;/h, h =
(D2 — D1)/2), the maximum value of the stream func-
tion in the recirculation region () and the local pres-
sure loss coefficient Ci. To this aim it is necessary to
solve numerically the continuity equation (Eq. (1)) and
the momentum equation (Eq. (2)), where the rheological
constitutive equation is that of a purely viscous gener-
alized Newtonian fluid.

au[
_— = 1
o =0 (1)

Ou;  O(uu;) op 0 . [ Ou;  Ou,
. _ _ s 2
p[ o o } ax o "N\ e e )| @
In Eq. (2) n(y) is the viscosity function given by the
power law model

n(y) = k" (3)
where the shear rate y is related to the second invariant
of the rate of deformation tensor (D;;) by
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Fig. 1. Schematic representation of sudden expansion geometry and control volume.
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Eqgs. (1)-(4) were solved with a general-purpose CFD
code developed by Oliveira (1992), which is based on the
finite-volume method applied to non-staggered meshes.
Extension to deal with non-Newtonian fluids of variable
viscosity is straightforward, being similar to the han-
dling of Reynolds-averaged equations for turbulent
Newtonian flows when using the concept of turbulent
viscosity. Therefore, a Newtonian code simply has to be
modified to include a variable viscosity function and the
turbulence model must be switched off. The boundary
conditions imposed for the sudden expansion flow
problem are clear from Fig. 1: at inlet (x = —L,), a
uniform velocity profile is given, in agreement with the
desired Reynolds number; at outlet (x = +L,), zero axial
gradients (0/0x = 0) are assumed to all variables (except
pressure); at walls (» = D;/2, r = D,/2 and x = 0), no
slip conditions are imposed. The differencing schemes
adopted are all formally second order: central differ-
ences for the diffusion terms and second order upwind
for the convection terms. The pressure—velocity coupling
was dealt with a time-marching form of the SIMPLEC
algorithm (Issa and Oliveira, 1994), the sets of linear
equations were solved with conjugate gradient methods
(preconditioned biconjugate solver for u and v, sym-
metric conjugate solver for p), and all the calculations
were performed with a Pentium/133 MHz computer
with 128 Mb RAM.

3. Theory

The main quantity of interest in this work is the ir-
reversible pressure loss coefficient (Cy) which is defined
as

G

Api — Ap— Apr — Apr

pvaoi e (5)
4% 2PUj

where the overall pressure drop between planes 1 and 2
in Fig. 1 is Ap = p; — p, and may be decomposed into
irreversible (I), reversible (R) and fully developed (F)
frictional pressure drops: Ap = Ap; + Apr + Apr as de-
termined from an integral energy balance applied to the
control volume of the figure. The reversible pressure
drop is given in Eq. (6), the fully developed frictional
pressure loss is the sum defined in Eq. (7),

1
Apr 259(“1U12 — oU;) (6)
L pUt L, pU;
App = fi— — = r= 7
\DF le1 5 + 2D2 ) (7)

and so the irreversible pressure drop Ap; includes not
only the effect of the sudden expansion itself but also a
friction effect, because the actual friction loss between
stations 1 and 2 (cf. Fig. 1) is different from the corre-
sponding fully developed friction losses. In this work,
the theory underlying the calculation of the loss coeffi-

cient for Newtonian fluids presented by Oliveira and
Pinho (1997) is adopted. That theory is independent of
the fluid viscosity law except for the profile shape factors
for energy o = 1>/ U® and momentum f = u2/U?, where
the overbar denotes average over the cross-section of the
pipes. For power law fluids with power index n those
two factors are given by

3Gn+1)
T n )+ 3) ®)
3n+1
p= 2n+1 ®)

for fully developed conditions.

Oliveira and Pinho (1997) have demonstrated that the
true pressure loss for Newtonian fluids (Cp) differed
significantly from the standard theory coefficient (Cy )
found in manuals and textbooks and derived a 1-D
theory to explain the difference. The theory is indepen-
dent of the law of variation of viscosity provided the
fluid is purely viscous, thus for generalized Newtonian
fluids the final relationship for correcting the standard
coefficient Cy y,, and yielding Cy. 4, (c-th for corrected
theory), is also given by

Cieth = Cran — {ACy + ACy — ACy} (10)

The various corrective terms account for different ef-
fects: ACk accounts for the differences between the true
and fully developed frictional losses in the upstream and
downstream pipes and is given by

Ly W . L, ., , ™
ACr =L f—a ) 422 —4 11
YT (fl lpU12>+D2<f26 %pr) (1)

2

ACy accounts for the effect of radial distortions in the
inlet axial velocity profile and is given by

ACﬁ:Z(l—a)(ﬁl = Bor) (12)

and finally AC, takes into account non-uniformities of
the pressure at the expansion measured by

ACp = (1 = 0)(Cpor — Cpi2) (13)
The standard theoretical loss coefficient was then found
to be given by

c“h—m(l—“z(ﬂ) —2[310(1—[620) (14)

O(] 1

which simplifies to Eq. (15) for conditions of fully de-
veloped flow at inlet and outlet.

Crp=oa(l — 62) —2fa(l — o) (15)

Clearly, this expression reduces to the well-known
Borda—Carnot local loss coefficient, equal to (1 — )’
when o = f = 1 (uniform velocity profile), and the first
term on the right-hand-side is the “reversible” pressure
recovery readily obtained from application of Ber-
noulli’s equation.
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The true irreversible pressure loss coefficient (Cy) is
directly determined from the computed pressure varia-
tions along the centreline, after adequate curve fitting of
the data and discounting the fully developed pressure
from the total pressure decrease (see details in Oliveira
and Pinho, 1997).

4. Grid testing and validation

The solution of a 2-D axisymmetric flow with a full
3-D code based on non-orthogonal coordinates and
Cartesian velocity components requires the use of a com-
putational domain with the shape of a wedge of trian-
gular cross section. This is usual practice and the required
corrections are those described in the previous work
(Oliveira and Pinho, 1997). The present work follows on
the same steps and the following must be done in order
for the results to be comparable.

First, the bulk velocity in the calculations (U) must be
modified so that the mass flow rate in the triangular
wedge duct is the same as in the circular pipe. The
friction factor is calculated using

4t,, D
S =0 2y (16)
where D is the diameter of the pipe and Y is the height of
the triangular wedge. This result corresponds to that of
the flow in a circular pipe at Re = pVD/pu,, with V rep-
resenting the bulk velocity in the circular pipe at the
same flow rate and y, an apparent viscosity.

For these power law fluids the Reynolds number used
is the generalized Reynolds number of Metzner and
Reed (1955) given in Eq. (17), here defined in terms of
upstream pipe characteristics and where £ and » are the
consistency and power indices of the Ostwald de Waele
power law (Eq. (3)).

D’ U2—n n
Regen = i b 8< & > (17)

k 6n+2

We start by presenting results of fully developed flow in
a straight pipe using a uniform mesh with 20 radial cells.
Predicted and theoretical friction factors for Newtonian
and power law fluids compare well in the plots of Fig. 2.
Differences cannot be detected in the Figure but they
increase with shear-thinning: for n = 1 the error does
not exceed 0.31%, but grows to 0.5% and 0.75% for
n = 0.4 and n = 0.2, respectively.

Radial profiles of the normalised axial velocity for
different values of the power index are plotted in Fig. 3
for a generalized Reynolds number of 200. The agree-
ment is as good as for the friction factor, and there is
again a deterioration with shear-thinning: differences
between the predicted and the theoretical velocity profile
are within 0.2% forn = 0.8 and n = 1.0,0.4% forn = 0.4
and n = 0.6, and increase to values of the order of 1%
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Fig. 2. Comparison between the theoretical (lines, / = 64/Rege) and
calculated (symbols) friction factors at the inlet pipe as a function of
the power law index.
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Fig. 3. Radial profiles of the normalised axial velocity for power law
fluids: symbols: calculations; lines: theory.

for n =0.2. This deterioration for n =0.2 is a conse-
quence of the extreme stiffness of the matrices of the
discretised momentum equations since the viscosities
tend to very large values in the core of the duct whenever
7y goes to zero (cf. Eq. (3)) (Pinho, 2001). For highly
shear-thinning fluids, the results can be improved if the
convergence tolerance is further reduced, at the cost
of extremely time consuming calculations (all calcula-
tions here were converged to a normalised L; residual of
1 x107°). An alternative approach to improve numerical
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convergence is to use a Carreau model for viscosity in-
stead of the power law, hence avoiding the singular
behaviour as y — 0, with unnoticeable consequences on
the overall results.

Due to the deterioration of the accuracy of results
with shear-thinning intensity, a thorough assessment of
the errors had to be done in the 1:2.6 diameter ratio
sudden expansion of Oliveira and Pinho (1997) using
three meshes with different degrees of refinement. Mesh
M2S was that used for Newtonian fluids by Oliveira and
Pinho (1997), who found that the key factor in the grid
was the smallest mesh spacing in the vicinity of the re-
entrant corner which should at least be of about 0.10
mm (in non-dimensional form ¢,/(D;/2) ~ 1/47 and
0x/(Dy — D1)/2 = 1/76) for the uncertainty in the cal-
culation not to exceed 0.2%. Mesh M1S was coarser by a
factor of 2, whereas mesh 3S was finer also by a factor of
2. The characteristics of these three meshes are presented
in Table 1. In each case, three mesh-generating blocks
have been used: the first block was located in the inlet
pipe, the second block was in the outlet pipe, immediately
downstream of the inlet pipe, and the third block was also
located in the outlet pipe, but downstream of the ex-
pansion wall. These meshes (denoted S from “‘standard’’)
were used for the simulations at low Reynolds numbers
(Regen < 50) and high values of n (n = 0.4 to 1.0); for
Regen > 50 and n = 0.2 the meshes in Table 2 had to be
used, having larger inlet and outlet pipes (denoted
“large”, L). These longer pipes were required for com-

plete flow development when the Reynolds number was
increased and/or the power index was decreased. In ad-
dition, accurate determination of the local loss coefficient
requires precise values of the friction coefficient in fully
developed flow, which are obtained by the curve fitting
procedure described by Oliveira and Pinho (1997), and
that entails longer development sections.

Predictions of the local loss coefficient C; and the
normalized recirculation length Xg based on these three
meshes enable evaluation of extrapolated values by the
technique of Richardson extrapolation to the limit (e.g.
Ferziger, 1981). Such results are presented in Tables 3-5,
and give an adequate picture of the accuracy of the
present sudden expansion calculations. Since all subse-
quent calculations in Section 5 were carried out with the
medium mesh, the relative error ¢ for any given quantity
A is calculated as ¢ = (Apy2 — Aext)/Aext X 100, where the
subscript ext indicates the extrapolated value and M2
refers to values obtained with mesh M2 (M2S or M2L,
as appropriate).

The uncertainties in Cy are fairly constant with # not
exceeding 1% at high Reynolds number, but can go up
to 2% for very low Reynolds numbers. For the nor-
malized recirculation length the deterioration in accu-
racy is more intense and errors can be as high as 10%
at low Reynolds numbers, and 5% at high Rey-
nolds numbers, with very shear-thinning fluids. For the
location of the eddy center (X¢) the uncertainties are
larger than for the recirculation length, whereas for the

Table 1
Characteristics of the meshes for the standard geometry (L;/D; = 20, L,/D> = 20)
Mesh Block I Block II Block IIT
Ny N, S Jy Ny N, Jx Sy N, N, S Jy
MIS 20 10 0.7517 0.8530 35 10 1.1909 0.8530 35 16 1.1909 1.1025
M2S 40 20 0.8670 0.9236 70 20 1.0913 0.9236 70 32 1.0913 1.0500
M3S 80 40 0.9311 0.9610 140 40 1.0447 0.9610 140 64 1.0447 1.0247
Table 2
Characteristics of the meshes for the long geometry (L, /D, = 100, L, /D, = 100)
Mesh Block 1 Block 11 Block IIT
N, N, Jx Sy Ny N, Jx Jy N, N, Jx Sy
MIL 25 10 0.7455 0.8530 45 10 1.1875 0.8530 45 16 1.1875 1.1025
M2L 50 20 0.8841 0.9236 90 20 1.095 0.9236 90 32 1.095 1.0500
M3L 100 40 0.9292 0.9610 180 40 1.0439 0.9610 180 64 1.0439 1.0247
Table 3
Estimation of uncertainty in the calculation of Cy and X; for fluids with n = 1
Reg, Cr X:
Ml M2 M3 Ri & [%)] Ml M2 M3 Ri & [%)]
0.1 165.107 166.689 167.380 168.004 +0.78 0.4583 0.4799 0.4856 0.4876 -1.57
4 4.270 4.291 4.299 4.305 -0.33 0.6682 0.6815 0.6856 0.6871 —-0.82
60 1.305 1.307 1.309 1.311 -0.36 6.141 6.114 6.104 6.100 +0.23

#Relative error for mesh M2 values.
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Table 4
Estimation of uncertainty in the calculation of Cy and X; for fluids with n = 0.8
Re, G X
Ml M2 M3 Ri & [%] Ml M2 M3 Ri & [%]
0.1 196.518 196.743 197.176 197.823 -0.55 0.3319 0.3565 0.3643 0.3672 -2.92
4 5.032 5.012 5.013 5.021 -0.19 0.4647 0.4845 0.4909 0.4933 -1.79
60 1.191 1.191 1.192 1.194 -0.22 3.950 4.252 4.261 4.251 +0.02
#Relative error for mesh M2 values.
Table 5
Estimation of uncertainty in the calculation of C; and X; for fluids with n = 0.4
Regl CI )(r
Ml M2 M3 Ri & [%)] Ml M2 M3 Ri & [%]
0.1 288.785 286.771 285.254 283.397 +1.19 0.1331 0.1517 0.1595 0.1663 -8.78
4 7.355 7.160 7.127 7.137 +0.32 0.1671 0.1758 0.1858 0.1996 -11.9
60 0.904 0.904 0.901 0.896 +0.89 1.658 1.667 1.685 1.712 -2.62

#Relative error for mesh M2 values.

eddy strength (¥¢) they are of the same order as those
of XR.

Improved predictions of Xr, X¢c and ¥¢ would have
required the use of mesh M3 on a shorter calculation
domain for the low Reynolds number simulations, and
possibly a tighter convergence residual, but the simula-
tions would have taken significantly longer running
times. This was not attempted as the main objective of
the work was the determination of the local loss coeffi-
cient for which mesh M2 gives adequate accuracy. For
these reasons, the predicted values of X in Section 5 are
given for a more limited range of Re than those of C.

For the Newtonian fluid we note that the recirculation
length, the maximum value of the stream function and the
location of the eddy centre matched the experimen-
tal data of Macagno and Hung (1967) and Back and
Roschke (1972), as well as the correlations of Badekas
and Knight (1992) and Scott et al. (1986) which were
derived on the basis of experimental and numerical data.
Predictions of the pressure loss coefficient Cy, as well as
the various corrections of Eq. (10), were found to be
within 0.1% of the values obtained by Oliveira and Pinho
(1997).

Comparison with experimental data from the litera-
ture for non-Newtonian fluids is significantly more dif-
ficult because there are few works where the fluids
behaved as purely viscous fluids. One such case is that
reported by Halmos et al. (1975) and Halmos and Boger
(1975) who have performed both numerical and exper-
imental work. Unfortunately, the experimental x, data
of Halmos and Boger are plotted in a way that does not
allow data retrieval for direct comparison, and thus one
must rely on some indirect assessment. Even such indi-
rect comparisons with the numerical results of Halmos
and Boger (1975) must be carried out carefully, as will
be shown below. These authors were only able to attain
converged solutions for power law fluids with n > 0.65,
due to limitations of their numerical method.

In Fig. 4, the agreement between the numerical re-
sults of Halmos et al. (1975) and our predictions for
Newtonian fluids is excellent, provided the fully devel-
oped inlet profile is imposed right at the expansion plane
following those authors, rather than considering the
more realistic situation of allowing the flow to develop
along an upstream pipe. A modified Reynolds number
definition is used

2—n
pDiUj
Remoq = P11 (18)
k

8 LN L B B B L B L B
S ]
= L 4
7L n
: ]
6 - -
5L N
4 a
3k ]
[ _
C z A Halmos et al (n=1) ]
L /7 — — - Predictions (n=1, long inlet) -
1 r Predictions (n=1, no inlet) ]
L A Halmos et al (n=0.8) 4
Foo ] e Predictions (n=0.8, long inlet) B
ol b L e L ]
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Fig. 4. Comparison with Halmos et al.’s (1975) predictions of recir-
culation bubble length as a function of inlet Reynolds number for a 1:2
sudden expansion flow of power law fluids. 7% error bars on Halmos
et al. (n = 0.8) data. “No inlet” refers to a fully developed velocity
profile imposed right at the expansion plane.
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which differs from the generalised Reynolds number by
a factor of 8(n/(6n + 2))".

For power law fluids our predictions are always lower
than those of Halmos et al. (1975), although to a lesser
extent when the inlet fully developed velocity profile is
set at the expansion plane, as done by Halmos et al.
Note also that the predictions of Halmos et al. were
always consistently higher by 7% than the experimental
values measured by Halmos and Boger (1975).

Different inlet conditions, mesh resolutions and ma-
chine accuracy explain the discrepancies observed in
Fig. 4. Whereas Halmos et al. (1975) imposed a fully
developed profile immediately upstream of the expan-
sion, the present calculations are more realistic since the
flow is allowed to develop in a long upstream pipe, as in
Halmos and Boger’s experiments. As demonstrated by
Oliveira and Pinho (1997) for Newtonian fluids, different
shapes of the inlet velocity have an influence on the
predicted recirculation bubble length, as well as on the
local loss coefficient. This is confirmed in Fig. 4 which
includes our predictions for » =1 with the parabolic
velocity profile set at the expansion plane (no inlet),
showing a close match with the predictions of Halmos
et al. (1975). This influence of inlet condition is expected
to increase as the power index decreases, since the shear
rate at the wall increases and the flow becomes more
sensitive to small changes in profile shape. Note that the
distortion of the velocity profile at the inlet to the ex-
pansion gives a flatter profile which results in a reduc-
tion of the recirculation length in agreement with the
discrepancies in Fig. 4 (a constant velocity at inlet leads
to a shorter recirculation bubble).

Another cause for discrepancies were the limitations
of computer power in the early works. Halmos et al.
(1975) used a very coarse uniform mesh with 10 cells in
the radial direction, giving a normalised cell spacing of
0.1 (see also Halmos (1973) for more details on their
computations and numerical method), while the mesh
here was non-uniform and the normalised cell spacing in
the shear layer was as low as 0.021. For non-Newtonian
shear-thinning fluids the issue of mesh refinement is even
more relevant. The mesh must be refined in regions of
high shear rate, to properly resolve the variations in
apparent viscosity and thus accurately calculate the ve-
locity field. Hence, it is important to use a very fine mesh
especially near the walls and in the shear layer down-
stream of the expansion plane. Last, but not least,
Halmos used a CDC 3200 machine which in those days
had an accuracy of approximately 5 to 6 decimal places
so increasing significantly round off errors (Halmos,
1994). Bearing in mind these aspects, it is not difficult to
account for the observed differences.

A final reason for the discrepancy between predic-
tions and experiments concerns the fluid behaviour.
Whereas the fluid model used is a power law, the real
fluid has a low shear rate constant viscosity and, as

mentioned by Halmos and Boger (1975), this could also
explain why the measured recirculation lengths are
shorter than the calculated values.

5. Main results and discussion

Any of the quantities of interest in this investigation
depends on the expansion ratio, the inlet condition, a
Reynolds number and other non-dimensional numbers
taking into account the fluid rheology. For the power
law fluids under investigation and taking as example the
recirculation length, such functional relationship can be
written as

X D, pDU; . o
P f ( D inlet condltlon) (19)
A question that arises with non-Newtonian fluid flows
concerns the definition of Reynolds number. For pipe
flow there is general agreement on the use of either the
wall viscosity, especially under the turbulent regime, or
an apparent viscosity based on the definition of the
generalised Reynolds number (Reg,) of Metzner and
Reed (1955). The latter forces the collapse of the friction
factor versus Reg, data for power law fluids onto a
single curve.

Research on turbulent sudden expansion and back-
ward facing step flows with Newtonian fluids (Adams
et al., 1984) have shown that a better collapse of data
can be obtained with the use of the step height (%), in-
stead of the upstream diameter (D), to define the nor-
malised recirculation length and the Reynolds number.
However, since the flow regime here is laminar and the
main focus is on the local loss coefficient, it is advan-
tageous to base the Reynolds number on the inlet pipe
characteristics and use the generalised Reynolds number
definition of Eq. (17) because fully developed friction
factors are traditionally based on such definition.

The present calculations are for an expansion with a
diameter ratio of 1 to 2.6 and for Reynolds numbers
from =0.1 up to order 200. The upper limit was set
based on information from the literature for Newtonian
fluids, which shows instabilities arising in expansion
flows when the inlet Reynolds number is in the range of
a few hundred. For a 1:2.6 diameter ratio expansion,
Back and Roschke (1972) report the existence of wave
motions in the shear layer between the pipe jet and the
recirculating bubble at Reynolds numbers of around
250. These waves propagate downstream and are am-
plified at higher Reynolds numbers defining a new flow
regime. Similar instabilities were reported by Iribarne
et al. (1972) in a 1:2 expansion and at a Reynolds
number of 350 a new transition leads to the onset of
tangential motion. These investigators also concluded
that a fully developed inlet profile delays the transition
to higher Reynolds numbers.
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5.1. Size and intensity of the recirculation

We start by presenting results for the recirculation
bubble, namely the variation of its normalised length
and intensity with the generalised Reynolds number and
power law index, in Figs. 5 and 6 respectively. The
variation of X, =x./h with the Reynolds number is
linear at high Reynolds numbers but asymptotes to a
constant value at creeping flow conditions. This as-
ymptotic value of X; decreases with shear-thinning.

For Newtonian fluids, the X; data compares well with
the results from the literature (Oliveira and Pinho, 1997;
Macagno and Hung, 1967; Badekas and Knight, 1992;
Scott et al., 1986 among others). At very low Reynolds
numbers the calculated value of X; of around 0.47 agrees
well with the results reported in the literature and it is
important to notice that, for creeping flow conditions,
the flow around a sudden contraction is identical to that
around a sudden expansion. For a 1:2 sudden expansion
Macagno and Hung (1967) calculated X; = 0.54, and for
a 1:2.26 expansion Monnet et al. (1982) measured
X; = 0.476. For sudden contractions Nguyen and Boger
(1979) found a constant x,/D, between 0.17 and 0.18,
for diameter ratios above than 4. Subsequent work (for
instance Coates et al., 1992) has confirmed x,/D; = 0.17
which is equivalent to X; = 0.46 for a 1:4 expansion.

For n = 0.2, X; also asymptotes to a constant value at
low Reynolds number, but these predictions are not
shown in the figure due to their lower accuracy (see
Section 4).
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Fig. 5. Variation of the recirculation length with the power law index
and the inlet Reynolds number for power law fluids for a 1:2.6 ex-
pansion.
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Fig. 6. Variation of the eddy strength with the power index and inlet
Reynolds number for power law fluids in a 2.6 expansion.

The intensity of the recirculation bubble ¥, shown in
Fig. 6 was determined from the predicted stream func-
tion field ¥, which is calculated from integration of the
flow rate, starting at the pipe axis.

The figure shows how the eddy strength decreases
with increased shear thinning, because the local viscosity
inside the eddy tends to increase due to the low shear
rates there. This is also observed in the contour plots of
the viscosity shown in Fig. 7. The quantity plotted is the
ratio of the viscosity to the apparent viscosity in the
upstream pipe. It is clear that high viscosities appear
within the recirculating region and in the center of the
redeveloping downstream flow. This increased viscosity
inside the recirculation bubble is also responsible for the
reduction of its size as seen in Fig. 5. Nevertheless, it is
noticed that at low Reynolds numbers the eddy has a
small but finite recirculation intensity.

5.2. Irreversible loss coefficient

The variation of the local loss coefficient is given in
Fig. 8 as a function of the shear-thinning intensity, for
the two definitions of Reynolds numbers, Rege, (Fig. 8a)
and Repoq (Fig. 8b), defined respectively in Egs. (17) and
(18). Likewise the results for a Newtonian fluid of
Oliveira and Pinho (1997), two regions of behaviour are
observed: at high Reynolds numbers (any Rege, > 50)
the loss coefficient Cy tends to a constant value typical of
inertia dominated flow, whereas at low Reynolds num-
bers the flow field is totally dominated by viscous effects
and Cy varies with Re following an inverse law. In be-
tween these two regions there is a transitional behav-
iour. Some of the data plotted in this figure are listed in
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Fig. 7. Contours of u/pu, in the vicinity of the expansion for a moderate shear thinning fluid (n = 0.6) at Rege, = 19.69.

Tables 6-10 together with the various corrections em-
bodied in Eq. (10). These data are useful for bench-
marking and for future comparison and extensions of
this work. Not perceptible from the figure is the exis-
tence of a slight minimum of Cy at an intermediate
Reynolds number, a feature previously reported by
Oliveira and Pinho (1997) and Oliveira et al. (1998) for
Newtonian fluids. The difference between this minimum
C1 and the asymptotic Cy value at high Re is rather small
and decreases with shear thinning.

A finding common to Newtonian fluid flow (Oliveira
and Pinho, 1997) is that the predicted local loss coeffi-
cient for power law fluids is very different from the value
of the literature (Cr, Eq. (15)) and this discrepancy
increases with shear thinning: at high Reynolds number,
where the standard theoretical value is numerically and
physically more correct, Cpy, differs from the true value
of Cy by 24% for a Newtonian fluid, the difference
growing to 37% for n = 0.6 and 64% for n = 0.2. At first
instance the opposite trend would appear more logical,
because the velocity profiles tend to become flatter with
shear thinning and thus the conditions used to derive
Crw are closer satisfied. However, the viscous effects

associated with n far outweigh the effect of the velocity
profile shape.

When the generalised Reynolds number is adopted
(Fig. 8a), the effect of shear thinning is opposite at high
and low Reynolds numbers: at high Reynolds numbers
the loss coefficient decreases with shear thinning,
whereas at low Reynolds numbers shear thinning in-
creases the pressure loss. It should be clear, however,
that the trends of the Cj variation with Re seen in Fig.
8(a) are, to a large extent, influenced by the definition
adopted for the Reynolds number itself. When the same
Cy data are plotted as a function of the modified Rey-
nolds number as in Fig. 8b then a reduction of the local
loss coefficient with shear thinning is observed
throughout the whole range.

The behaviour at high Reynolds numbers is basically
related to the shape of the mean velocity profile and its
deformation in the vicinity of the sudden expansion. For
a highly shear-thinning fluid the velocity profile is closer
to a plug shape and any further deformation is inhibited,
as discussed hereafter. First, the distortion in the up-
stream velocity profile on approaching the expansion is
such that it tends to flatten the profile shape. Since the

Table 6
Predicted (Cy), corrections and corrected theoretical loss coefficient (Cye ) in the 1:2.6 sudden expansion for n = 1 (Crg, = 1.620)
Regen C[ BOI AC/; ACFI ACFz AC,,[) Clcflh Error [%]a
(Eq. (10))
0.0989 166.7 1.219 0.1948 -25.62 11.84 156.2 171.4 +2.8
0.2966 55.57 1.220 0.1931 —8.478 3.983 50.89 56.82 +2.2
0.4944 33.34 1.221 0.1914 -5.088 2.412 30.03 34.13 +2.4
0.9887 16.71 1.224 0.1863 —2.484 1.236 14.39 17.07 +2.2
3.955 4.291 1.241 0.1573 -0.5635 0.3658 2.715 4.375 +1.9
9.887 2.001 1.266 0.1147 —0.1954 0.2255 0.5588 2.034 +1.6
19.775 1.465 1.287 0.0789 -0.0821 0.2217 0.0799 1.481 +1.1
29.66 1.360 1.297 0.0619 —0.0482 0.2329 —-0.0029 1.370 +0.8
39.55 1.325 1.303 0.0517 -0.0331 0.2419 -0.0261 1.333 +0.6
49.44 1.312 1.307 0.0449 —0.0244 0.2473 —-0.0335 1.318 +0.5
69.21 1.305 1.312 0.0363 -0.0155 0.2553 —-0.0353 1.308 +0.3
98.87 1.306 1.316 0.0278 —-0.0100 0.2612 -0.0314 1.309 +0.3
128.5 1.309 1.319 0.0244 —-0.0065 0.2648 -0.0272 1.310 +0.1
148.3 1.311 1.321 0.0210 —-0.0053 0.2664 —-0.0248 1.313 +0.1
168.1 1.313 1.322 0.0193 -0.0047 0.2677 —-0.0228 1.315 +0.1
197.8 1.315 1.323 0.0176 —-0.0037 0.2691 —-0.0202 1.316 +0.1

Error = (Creqn — C1)/C1 x 100.
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Table 7

Predicted (Cy), corrections and corrected theoretical loss coefficient (Cye ) in the 1:2.6 sudden expansion for n = 0.8 (Crq¢, = 1.534)

Regen G Bor ACy ACp ACpy ACy Creth Error [70]*
(Eq. (10)
0.0987 196.7 1.197 0.1886 -26.75 20.10 167.3 175.3 -10.9
0.2956 65.72 1.198 0.1869 -8.871 6.740 61.62 65.09 -1.0
0.4933 39.34 1.199 0.1852 -5.324 4.067 36.49 39.10 -0.6
0.9865 19.76 1.202 0.1807 -2.623 2.065 17.65 19.56 -1.0
3.946 5.012 1.215 0.1579 -0.6098 0.5732 3.564 4.976 -0.7
9.865 2.191 1.234 0.1249 -0.2157 0.2911 0.8672 2.200 +0.4
19.73 1.435 1.255 0.0898 -0.0892 0.2578 0.1645 1.440 +0.3
29.60 1.275 1.266 0.0710 —-0.0512 0.2627 0.0275 1.279 +0.3
39.46 1.222 1.273 0.0591 —0.0345 0.2680 -0.0128 1.228 +0.5
49.33 1.201 1.278 0.0506 —-0.0253 0.2766 -0.0275 1.205 +0.3
69.06 1.186 1.284 0.0404 -0.0158 0.2846 -0.0349 1.190 +0.3
98.66 1.184 1.289 0.0318 —-0.0096 0.2930 -0.0334 1.185 +0.1
128.2 1.186 1.292 0.0267 —0.0068 0.2978 -0.0298 1.186 +0.01
148.0 1.188 1.294 0.0233 —-0.0054 0.2995 -0.0275 1.189 +0.1
167.7 1.189 1.295 0.0216 -0.0044 0.3011 -0.0255 1.190 +0.04
197.3 1.192 1.296 0.0199 —-0.0036 0.3029 -0.0229 1.191 -0.02

Error = (Ciesn — C1)/C1 x 100.

Table 8

Predicted (Cy), corrections and corrected theoretical loss coefficient (Cic () in the 1:2.6 sudden expansion for n = 0.6 (Crq, = 1.422)

Regen C] ﬁ[)l AC/; ACFI ACFZ ACpO C[C th Error [%]"‘
(Eq. (10))
0.0984 235.2 1.170 0.1750 -26.71 34.73 231.4 224.6 -4.5
0.2953 78.45 1.171 0.1733 -8.869 11.62 76.39 74.89 —4.5
0.4921 46.90 1.171 0.1716 -5.278 6.996 45.39 44.92 -4.2
0.9843 23.46 1.173 0.1699 -2.705 3.495 22.14 22.61 -3.6
3.937 5.902 1.182 0.1546 -0.6189 0.9412 4.742 5.687 -3.6
9.843 2.481 1.196 0.1307 -0.2285 0.4449 1.346 2.420 -24
19.69 1.459 1.212 0.1035 —-0.0985 0.3173 0.3442 1.443 -1.1
29.53 1.203 1.224 0.0830 —-0.0568 0.3001 0.0977 1.192 -0.9
39.37 1.110 1.232 0.0694 -0.0376 0.3018 0.0159 1.104 -0.5
49.21 1.068 1.238 0.0592 —-0.0264 0.3070 —-0.0154 1.066 -0.1
68.9 1.041 1.245 0.0472 —-0.0158 0.3165 —-0.0342 1.039 -0.1
98.43 1.032 1.251 0.0353 -0.0095 0.3260 —-0.0369 1.033 +0.03
128.0 1.033 1.255 0.0302 —0.0066 0.3319 —-0.0343 1.032 -0.1
147.6 1.034 1.257 0.0268 -0.0051 0.3349 -0.0321 1.033 -0.1
167.3 1.035 1.258 0.0234 —-0.0046 0.3371 -0.0301 1.035 +0.03
196.9 1.037 1.260 0.0217 —-0.0035 0.3393 -0.0273 1.037 -0.05

#Error = (Cieth — C1)/C1 % 100.

profiles are already quite flat due to shear thinning,
smaller changes are prone to take place. Secondly, flatter
velocity profiles produce high viscosities in the core of
the pipe and this tends to induce additional resistance to
distortions in the velocity and pressure profiles. Hence,
as shear thinning increases the modifications of the ve-
locity profile become more localised and tend to occur
closer to the wall. This is shown in Fig. 9 where the
momentum shape factor at the end of the upstream pipe
(Boy) 1s plotted as a function of the generalised Reynolds
number and ». In all cases f; is constant at low Re, then
it increases tending to an asymptote at large Re. As n
decreases, the values of f3;; are reduced due to flatter
velocity profiles, the rise in f, is delayed to higher
Reynolds numbers and the differences between the high

and low Reynolds number asymptotic values decrease.
This is clear evidence of a smaller amount of distortion
in the upstream velocity profile.

At low Reynolds numbers, the use of Reye, leads to
the misleading trends commented above and seen in Fig.
8a, and for that reason it is better to consider Repyoq as
the main independent parameter for the physical char-
acterisation of pressure losses in the expansion. How-
ever, Regn Will still be employed for the correlation
developed in Section 5.3, because it is more practical for
the evaluation of pressure losses in piping systems which
have historically been based on the generalised Reynolds
number. For frictional losses in a straight pipe its use
provides a unique expression for f(f = 64/Regen) re-
gardless of the shear-thinning intensity.
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Table 9
Predicted (Cy), corrections and corrected theoretical loss coefficient (Cye ) in the 1:2.6 sudden expansion for n = 0.4 (Cry, = 1.269)
Regen CI BO] AC’; ACFl ACFZ ACpU Clc—lh Error [(VD]‘d
(Eq. (10))
0.0982 286.8 1.134 0.1503 -24.82 59.73 294.76 261.0 -9.0
0.2946 95.69 1.134 0.1503 -8.163 19.95 97.59 86.92 -9.0
0.4910 57.20 1.135 0.1486 —4.681 12.00 58.16 51.96 -9.0
0.9821 28.78 1.136 0.1469 —-2.346 6.035 28.58 26.02 -9.6
3.928 7.160 1.141 0.1384 —-0.5822 1.570 6.433 6.576 -8.1
9.820 2.931 1.148 0.1265 —-0.2260 0.6949 2.068 2.742 -6.4
19.64 1.587 1.157 0.1111 -0.1073 0.4231 0.6961 1.539 -3.1
29.46 1.201 1.165 0.0975 —-0.0607 0.3600 0.2920 1.165 -3.0
39.28 1.029 1.173 0.0839 -0.407 0.3383 0.1212 1.009 -1.9
49.10 0.947 1.180 0.0719 —-0.0287 0.3303 0.0390 0.935 -1.3
68.74 0.874 1.189 0.0566 -0.0162 0.3358 -0.0369 0.856 -2.1
98.21 0.850 1.197 0.0430 —-0.0097 0.3463 —-0.0436 0.846 -0.4
127.7 0.845 1.202 0.0345 —-0.0065 0.3546 —-0.0435 0.843 -0.2
147.3 0.844 1.204 0.0310 —-0.0049 0.3588 —0.0413 0.843 -0.1
167.0 0.846 1.206 0.0276 —-0.0040 0.3621 -0.0391 0.845 -0.1
196.4 0.847 1.208 0.0242 —-0.0032 0.3660 —-0.0358 0.847 -0.1

Error = (Cretn — C1)/C1 x 100.

Table 10
Predicted (Cy), corrections and corrected theoretical loss coefficient (Cye ) in the 1:2.6 sudden expansion for n = 0.2 (Cry, = 1.053)
Regen CI [gm AC/; ACFI ACFZ ACP() Clc—th Error [0 n)]a
(Eq. (10))
0.0980 372.8 1.084 0.1003 -18.20 102.6 391.3 307.8 -17.4
0.2939 124.5 1.084 0.1003 -6.204 33.73 130.4 103.8 -16.6
0.4899 74.53 1.084 0.1003 -3.671 20.25 77.89 62.26 -16.5
0.9798 37.32 1.084 0.1003 -1.839 10.172 38.54 31.16 -16.5
3919 9.355 1.086 0.0969 —-0.4987 2.1381 9.028 7.846 -16.1
9.799 3.766 1.087 0.0952 -0.1970 1.1133 3.181 3.223 -14.4
19.60 1.940 1.088 0.0935 —-0.0999 0.6371 1.286 1.708 -12.0
29.40 1.376 1.090 0.0901 —-0.0654 0.4835 0.6932 1.238 -10.0
39.19 1.076 1.093 0.0849 —-0.0456 0.4101 0.4061 1.010 -6.2
48.99 0.896 1.096 0.0798 —-0.0343 0.3598 0.2554 0.903 +0.8
68.59 0.801 1.104 0.0662 —-0.0211 0.3441 0.0886 0.752 -6.0
97.98 0.700 1.113 0.0509 -0.0117 0.3338 —-0.0041 0.676 -34
127.4 0.659 1.119 0.0406 —-0.0081 0.3346 —-0.0393 0.646 -1.9
147.0 0.645 1.123 0.0355 —-0.0065 0.3373 -0.0505 0.636 -1.3
166.6 0.635 1.124 0.0321 —-0.0050 0.3404 —-0.0560 0.629 -0.9
196.0 0.632 1.127 0.0270 —-0.0042 0.3000 —-0.0581 0.627 -0.7

2Error = (Cien — C1)/C1 x 100.

The 1-D theory presented in Section 3 explains in a
simple way the discrepancies between the calculated Ci
and the common expression for Cy g, but it is not aimed
at providing an exact correction (Ci.¢) to Cry,. The
theory works reasonably well for n > 0.6 but produces
errors in excess of 5% for strongly shear-thinning fluids,
especially at low Reynolds numbers (for instance, 9% and
17% forn = 0.4 and 0.2, see Tables 9 and 10). This loss of
accuracy is not caused by lack of mesh refinement, but to
incomplete convergence of the numerical calculations.
With increased levels of shear-thinning the high viscosi-
ties within the recirculating eddy lead to very stiff matrices
of the discretized equations, which require tighter con-
vergence criteria for identical accuracy levels, and even
the 107> used here for the normalised L;-norm of the
residuals is not sufficiently low tolerance (Pinho, 2001).

Such low tolerances were not tried because the com-
puting time would grow disproportionately without
significant improvement on the predictions of Cj. Note
that the local loss coefficient is obtained from the pres-
sure variation along the centreline, while the stiff ma-
trices are related to high viscosities especially in the
recirculating region and so will have more impact on the
corrections AC, and ACk;.

The tables also show well that the most important
corrections, ACp, (wall friction in outlet pipe) and ACy
(non-uniform pressure), increase with shear thinning at
low Reynolds numbers. In contrast, ACg; (wall friction
in inlet pipe) looks fairly independent of n, except for the
lowest n. Of the large corrections ACy is the most im-
portant, especially at low Reynolds numbers, and grows
in importance as n decreases. This is shown in Fig. 10,
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Fig. 8. Variation of the irreversible loss coefficient with power index
and Reynolds number in a 1:2.6 expansion: (a) generalised Reynolds
number, Eq. (17); (b) modified Reynolds number, Eq. (18).

where the local loss coefficient from the flow simula-
tions, C, is compared with corrected-theoretical values
(Cre_tn) obtained from Eq. (10) with and without taking
into account non-uniformity of pressure fields (ACy).
Two values of power law index are considered, n = 0.8
(mild shear-thinning, Fig. 10a) and n = 0.4 (strong shear
thinning, Fig. 10b). Clearly, pressure non-uniformity
has an important contribution at low Reynolds num-
bers, in particular at low n (Fig. 10b). By neglecting its
effect, i.e. by assuming a uniform pressure at the ex-
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Fig. 9. Variation of the momentum shape factor at the end of the inlet

pipe with Reynolds number and power index of power law fluids in a
1:2.6 expansion.

pansion plane, the predictions of the corrected-theory
show the opposite trend to be the true variation of Cy
with Regep,.

5.3. Correlation for local loss coefficient

More useful from an engineering point of view is a
correlation for Cj as a function of Reye, and n. As noted
above, Rege, is here preferred to the more physically
meaningful Renoq, because it facilitates practical calcu-
lations of pressure loss. Following our previous work
with Newtonian fluids (Oliveira et al., 1998), the fol-
lowing correlation, obtained by best-fitting techniques,
is proposed
C = Rm—nllz + m3 + my x log(Regen) + ms X logz(Regen)

€gen
(20)
where the m; coefficients are given by the expressions:
my = 17.45 — 27.53 x log(n)
my =1 —0.0097 + 0.00271* — 0.010x°
m3 = 0.113 — 1.02n (21)
my = —0.256 4+ 1.21n + 0.498n>

ms = 0.124 — 0.0911n — 0.1495> — 0.1104°

These expressions are to be used only for a sudden ax-
isymmetric expansion with a diameter ratio of 1:2.6 in
the range of 0.2<n <1 and 0.09 < Rege, < 200. A com-
parison between the calculated values of C; and those
given by Eq. (20) is shown in Fig. 11. Expression (20)
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Fig. 10. Effect of n on the pressure correction ACy to Cy: (a) n = 0.8,
(b)yn=04.

gives computed values of C; with accuracies better than
3% at low and high Reynolds numbers and of about 5-
6% at intermediate Reynolds numbers.

6. Conclusions

A numerical investigation was carried out to obtain
the variation of the local loss coefficient Cy through a
1:2.6 sudden expansion for power law fluids. The effects
of shear thinning and Reynolds number were assessed.
The variation of the recirculation length and of the eddy

n

1
107 E G 82 4
r *‘*?1_'7% 0.4 1

Mt 02 ]
sl " N

10" 10° 10 10?

Re

gen

Fig. 11. Comparison between the loss coefficients obtained from the
flow simulations (Cy, symbols) and approximate values of Cy from the
correlation of Egs. (20) and (21) (lines).

strength were also quantified. The main findings were
the following:

e The normalized recirculation length decreased with
shear thinning, and in all cases two regions of behav-
iour were observed: a linear variation of Xg at high
Reynolds numbers and an asymptotic behaviour as
the Reynolds number tended to zero that also de-
pended on #;

e The eddy strength weakened with shear thinning and
also exhibited an asymptotic value at low Reynolds
numbers. However, at high Reynolds numbers its
variation with Re was not linear;

e Atlow Reynolds numbers the flow was dominated by
viscous forces and the local loss coefficient varies in-
versely with the Reynolds number. When Regey, is em-
ployed, the loss coefficient is found to increase with
shear-thinning by more than 100% when n decreases
from 1 to 0.2;

e At high generalised Reynolds numbers, Cj tends to a
constant value which decreases with shear thinning.
When employing Reg., a variation in excess of 50%
was found when » decreased from 1.0 to 0.2;

e Contrasting with the two previous points, it was
found that C; always decreases monotonically with
decreasing n if the modified Reynolds number is
adopted as the independent parameter instead of
the generalised Reynolds number;

e A correlation was derived for the local loss coeffi-
cient, in terms of Re,e, and n, to facilitate engineering
calculations of pressure losses in piping systems.
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